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Decisions, Decisions

Explosion of interest in word embeddings. These are real
valued vectors that are used for two purposes:

1. feature representations for downstream NLP/ML tasks.

2. tools for studying word usage and meaning—“semantics”.

As with all such representational strategies (topic models,
TF-IDF), there are (literally thousands) of modeling options
available. . .

How should political scientists choose among them?

→ Portrait comparison is key to our strategy.
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Why do we ask?

Explosion of interest in word embeddings. These are real
valued vectors that are used for two purposes:

1. feature representations for downstream NLP/ML tasks.

2. tools for studying word usage and meaning— “semantics”.

As with all such representational strategies, there are (literally
thousands) of modeling options available. . .

How should political scientists choose among them?

→ Portrait comparison is key to our strategy.



Some Background



Firth quote, so you know we’re legit

“You shall know a word by the company it keeps.”

(Firth, 1957)
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Some Foreground



I need to. . .

. . . automatically generate a dictionary from unlabeled corpora
(Hamilton et al, 2016)

. . . model ideology of parliamentarians (Rheult & Cochrane,
2019)

. . . improve performance of readme (Jerzak et al, 2018)

. . . understand how words have changed meaning over time
(Rodman, 2019)

→ choose a model (Word2Vec, GloVe), an architecture within
that model (CBOW, Skipgram), parameters within that
architecture (window size, embedding length) and a training
set (pretrained, locally fit).
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The Problem

There are no generally accepted downstream tasks in political
science: ‘extrinsic’ evaluation criteria make no sense (e.g.
analogy banks, learner accuracy).

So, embeddings are only useful to the extent they capture
semantically meaningful information about politics: focus on
‘intrinsic’ evaluation criteria.

But how can we evaluate this?
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The Solution

We propose a “Turing test”: ask crowdworkers whether
output from humans or machine (model) fits a cue better.

We get remarkable, human-like performance from embeddings
models in terms of meaning. X
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Wait, there’s more. . .

Embeddings models have multiple parameters, especially
window-size and embedding dimensions.

And should you use pretrained or locally fit?

We use our technical critera on fit and stability and our
Turing test to provide advice.

Avoid small windows, few dimensions but otherwise results are
robust to these parameter choices. X

Pretrained embeddings work about as well as anything else. X
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Implementing Choices

We train a series of (local) models.

We focus on two hyperparameter choices (25 combinations):

window-size —1, 6, 12, 24 and 48

embedding dimension —50, 100, 200, 300 and 450

For each pair we estimate 10 sets of embeddings (250 in all).

Also compare to GloVe and Word2Vec (skip-gram) pretrained.
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Evaluation Criteria

technical criteria: model loss and computation time.

model variance (stability): within-model Pearson correlation
of nearest neighbor rankings across multiple initializations.

query search ranking correlation: Pearson and rank
correlations of cosine similarities.

human preference: a “Turing test” assessment and rank
deviations from human generated lists.
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Wrapping Up

We get remarkable, human-like performance from embeddings
models in terms of meaning. X

Avoid small windows, few dimensions but otherwise results are
robust to these parameter choices. X

Pretrained, ‘default’ embeddings work about as well as
anything else. X

GloVe appears to be more robust than Word2vec, but both
are equally liked by humans. X
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Thank you!

R software package to apply our proposed metrics and
framework: coming soon.

GitHub:
http://github.com/ArthurSpirling/EmbeddingsPaper

Paper:
../Paper/Embeddings_SpirlingRodriguez.pdf

FAQ:
../Project_FAQ/faq.md

http://github.com/ArthurSpirling/EmbeddingsPaper
../Paper/Embeddings_SpirlingRodriguez.pdf
../Project_FAQ/faq.md

