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Which one of these portraits is more realistic?




WELFARE

dependency reform

Select the best candidate context word for the cue word provided by clicking on the respective checkbox below the word.
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“You shall know a word by the company it keeps.”

(Firth, 1957)
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From Context to Embeddings

e cup

o coffee
o tea

2 word context

f \
I had a cup of[tealthis afternoon
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The Problem

There are no generally accepted downstream tasks in political
science: ‘extrinsic’ evaluation criteria make no sense (e.g.
analogy banks, learner accuracy).

So, embeddings are only useful to the extent they capture
semantically meaningful information about politics: focus on
‘intrinsic’ evaluation criteria.

But how can we evaluate this?
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The Solution

We propose a “Turing test”: ask crowdworkers whether
output from humans or machine (model) fits a cue better.

We get remarkable, human-like performance from embeddings
models in terms of meaning. v
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Wait, there's more. . .

Embeddings models have multiple parameters, especially
window-size and embedding dimensions.

And should you use pretrained or locally fit?

We use our technical critera on fit and stability and our
Turing test to provide advice.

Avoid small windows, few dimensions but otherwise results are
robust to these parameter choices. v/

Pretrained embeddings work about as well as anything else. v
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Implementing Choices

We train a series of (local) models.

We focus on two hyperparameter choices (25 combinations):
window-size —1, 6, 12, 24 and 48

embedding dimension —50, 100, 200, 300 and 450
For each pair we estimate 10 sets of embeddings (250 in all).

Also compare to GloVe and Word2Vec (skip-gram) pretrained.



Evaluation Criteria

technical criteria: model loss and computation time.

model variance (stability): within-model Pearson correlation
of nearest neighbor rankings across multiple initializations.

query search ranking correlation: Pearson and rank
correlations of cosine similarities.

human preference: a “Turing test” assessment and rank
deviations from human generated lists.
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Evaluation Criteria

query search correlations: Pearson and rank correlations of
cosine similarities.
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Evaluation Criteria

human preference: a “Turing test” assessment and rank
deviations from human generated lists.



RShiny App: Definitions

Context Words
Afamous maxim in the study of linguistics states that:
You shall know a word by the company it keeps. (Firth, 1957)

This task is designed to help us understand the nature of the "company'' that words ""keep": that is, their CONTEXT.

Specifically, for a CUE WORD, its CONTEXT WORDS include words that:

e Tend to occur in the vicinity of the CUE WORD. That is, they are words that appear close to the CUE WORD in written or
spoken language.

AND/OR

e Tend to occur in similar situations to the CUE WORD in spoken and written language. That is, they are words that
regularly appear with other words that are closely related to the CUE WORD.

For example, CONTEXT WORDS for the cue word COFFEE include:

1. cup (tends to occur in the vicinity of COFFEE).
2. tea(tends to occur in similar situations to COFFEE, for example when discussing drinks).

Click ""Next'" to continue




RShiny App-1: Context Word Generation

Task 3 of 10

welfare

Click here to enter text

Press enter to save entry.

- reform - help - poor

Number of unigue words entered: 3
Number of words required to satisfy minimum: 7
Time remaining: 156 secs

Please input at least 10 context words before clicking ''Next'.
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RShiny App-2: “Turing” Context Word Evaluation

. WELFARE
Machine Human

dependency reform

Select the best candidate context word for the cue word provided by clicking on the respective checkbox below the word.

Click "Next" to continue

Next

Machine: 1 - Human: 0
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2.0

Candidate: GloVe pretrained
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Candidate: GloVe pretrained
Baseline: W2V pretrained
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Wrapping Up

We get remarkable, human-like performance from embeddings
models in terms of meaning. v

Avoid small windows, few dimensions but otherwise results are
robust to these parameter choices. v

Pretrained, ‘default’ embeddings work about as well as
anything else. v

GloVe appears to be more robust than Word2vec, but both
are equally liked by humans. v/



Thank you!

R software package to apply our proposed metrics and
framework: coming soon.

GitHub:
http://github.com/ArthurSpirling/EmbeddingsPaper

Paper:
. ./Paper/Embeddings_SpirlingRodriguez.pdf

FAQ:
../Project_FAQ/faq.md



http://github.com/ArthurSpirling/EmbeddingsPaper
../Paper/Embeddings_SpirlingRodriguez.pdf
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